Answer
$\dfrac{(x-1)(x^2+1)+x^4}{x^3(x^2+1)}$
Work Step by Step
The LCD is $x^3(x^2+1)$.
Make the expressions similar by multiplying the numerators and denominators by $x^2+1$ and $x^3$, respectively, to obtain:
$=\dfrac{x-1}{x^3}\cdot \dfrac{x^2+1}{x^2+1}+\dfrac{x}{x^2+1}\cdot \dfrac{x^3}{x^3}$
$=\dfrac{(x-1)(x^2+1)}{x^3(x^2+1)}+\dfrac{x^4}{x^3(x^2+1)}$
Add numerators and retain the denominator to obtain:
$=\dfrac{(x-1)(x^2+1)+x^4}{x^3(x^2+1)}$