Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.5 Rational Expressions - A.5 Assess Your Understanding - Page A41: 17

Answer

$\dfrac{2x(x^2+4x+16)}{x+4}, x\ne-4, 0, 4$

Work Step by Step

Not e that: $\dfrac{4x^2}{x^2-16}\cdot \dfrac{x^3-64}{2x}=\dfrac{4x^2}{x^2-4^2}\cdot \dfrac{x^3-4^3}{2x}$ Factor each polynomial completely. Use special formulas $a^3-b^3=(a-b)(a^2+ab+b^2)$ and $a^2-b^2=(a+b)(a-b)$ and determine the restrictions to obtain: $=\dfrac{4x^2}{(x+4)(x-4)}\cdot \dfrac{(x-4)(x^2+4x+16)}{2x}, x\ne-4, 0, 4$ Cancel the common factors $x-4, 2, $ and $x$: $=\dfrac{2x(x^2+4x+16)}{x+4}, x\ne-4, 0, 4$ Hence, the lowest term is: $\dfrac{2x(x^2+4x+16)}{x+4}, x\ne-4, 0, 4$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.