Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.5 Rational Expressions - A.5 Assess Your Understanding - Page A41: 21

Answer

$-\dfrac{(x-4)^2}{4x}, x\ne-4, 0, 4$

Work Step by Step

The initila restrictions are $x\ne-4, 4$. Use the rule $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$ to obtain: $\dfrac{4-x}{4+x} \cdot \dfrac{x^2-16}{4x}$ $=\dfrac{4-x}{4+x} \cdot \dfrac{x^2-4^2}{4x}$ $=\dfrac{-1(-4+x)}{4+x} \cdot \dfrac{x^2-4^2}{4x}$ $=\dfrac{-(x-4)}{4+x} \cdot \dfrac{x^2-4^2}{4x}$ There is an additional restriction $x\ne0$. Factor each polynomial completely. Use special formula $a^2-b^2=(a+b)(a-b)$ to obtain: $=\dfrac{-(x-4)}{4+x} \cdot \dfrac{(x+4)(x-4)}{4x}, x\ne-4, 0, 4$ Cancel the common factor $x-4$: $=-\dfrac{(x-4)(x-4)}{4x}$ $=-\dfrac{(x-4)^2}{4x}, x\ne-4, 0, 4$ Hence, the lowest term is: $-\dfrac{(x-4)^2}{4x}, x\ne-4, 0, 4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.