Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.5 Rational Expressions - A.5 Assess Your Understanding - Page A41: 22

Answer

$-\dfrac{9x^3}{(x-3)^2}, x\ne-3, 0, 3$

Work Step by Step

The initial restrictions are $x\ne0, 3$. Use the rule $\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}$ to obtain: $\dfrac{3+x}{3-x} \cdot \dfrac{9x^3}{x^2-9}$ $=\dfrac{x+3}{-1(-3+x)} \cdot \dfrac{9x^3}{x^2-3^2}$ $=\dfrac{x+3}{-(x-3)} \cdot \dfrac{9x^3}{x^2-3^2}$ This yields another restriction which is $x\ne -3$ Factor each polynomial completely. Use special formula $a^2-b^2=(a+b)(a-b)$ to obtain: $=\dfrac{x+3}{-(x-3)} \cdot \dfrac{9x^3}{(x+3)(x-3)}, x\ne -3, 0, 3$ Cancel the common factor $x+3$: . $=-\dfrac{9x^3}{(x-3)^2}, x\ne-3, 0, 3$ Hence, the lowest term is: $-\dfrac{9x^3}{(x-3)^2}, x\ne -3, 0, 3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.