Answer
$\dfrac{4x}{2x-1}, \space x\ne0$.
Work Step by Step
Note that $\dfrac{24x^2}{12x^2-6x}=\dfrac{6x(4x)}{6x(2x)-6x}$
Factor out $6x$ in the denominator.
$=\dfrac{6x(4x)}{6x( 2x-1)}$
Cancel the common factor $6x$:
$=\dfrac{4x}{2x-1}, \space x\ne 0$
Hence, the lowest term is $\dfrac{4x}{2x-1}, x\ne0$.