Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.5 Rational Expressions - A.5 Assess Your Understanding - Page A41: 12

Answer

$\dfrac{x+2}{x-2}, \space x\ne-2$

Work Step by Step

Note that $\dfrac{x^2+4x+4}{x^2-4}=\dfrac{x^2+2(x)(2)+2^2}{x^2-2^2}$ Use special formula $a^2+2ab+b^2=(a+b)^2$ in the numerator and $a^2-b^2=(a+b)(a-b)$ in the denominator to obtain:. $=\dfrac{(x+2)^2}{(x+2)(x-2)}$ $=\dfrac{(x+2)(x+2)}{(x+2)(x-2)}$ Cancel the common factor $x+2$: $=\dfrac{x+2}{x-2}, x\ne-2$ Hence, the lowest term is $\dfrac{x+2}{x-2}, x\ne-2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.