#### Answer

$45,057,474$ selections

#### Work Step by Step

A combination from a group of items occurs when no item is used more than once and the order of items makes no difference.
The number of combinations possible if $r$ items are taken from $n$ items is
${}_{n}C_{r}=\displaystyle \frac{n!}{(n-r)!r!}$
--------------
Order is not important, we deal with combinations.
${}_{59}C_{6}=\displaystyle \frac{59!}{(59-6)!6!}$
$=\displaystyle \frac{59\times 58\times 57\times 56\times 55\times 54}{1\times 2\times 3\times 4\times 5\times 6}$
$=\displaystyle \frac{59\times 58\times 57\times 7\times 11\times 3}{1\times 1\times 1\times 1\times 1\times 1}$
$=45,057,474$