#### Answer

$22,957,480$ selections

#### Work Step by Step

A combination from a group of items occurs when no item is used more than once and the order of items makes no difference.
The number of combinations possible if $r$ items are taken from $n$ items is
${}_{n}C_{r}=\displaystyle \frac{n!}{(n-r)!r!}$
--------------
Order is not important, we deal with combinations.
${}_{53}C_{6}=\displaystyle \frac{53!}{(53-6)!6!}$
$=\displaystyle \frac{53\times 52\times 51\times 50\times 49\times 48}{1\times 2\times 3\times 4\times 5\times 6}$
$=\displaystyle \frac{53\times 52\times 17\times 10\times 49\times 1}{1\times 1\times 1\times 1\times 1\times 1}$
$=22,957,480$