University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 3 - Practice Exercises - Page 202: 45



Work Step by Step

$y=\ln{(\sin^2\theta})$ On differentiating both sides: $\frac{dy}{d\theta}=\frac{d(\ln{(\sin^2\theta}))}{d\theta}$ $\frac{dy}{d\theta}=\frac{1}{\sin^2\theta}\frac{d({(\sin^2\theta}))} {d\theta}$ $\frac{dy}{d\theta}=\frac{{(2\sin\theta\cos\theta})}{\sin^2\theta}=\frac{2\cos\theta}{\sin\theta}$ $\frac{dy}{d\theta}=2\cot\theta$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.