University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Practice Exercises - Page 111: 10

Answer

a) The limit = $\infty$. b) The limit does not exist.

Work Step by Step

$$f(x)=\frac{x^2+x}{x^5+2x^4+x^3}$$ a) $$\lim_{x\to0}\frac{x^2+x}{x^5+2x^4+x^3}=\lim_{x\to0}\frac{x(x+1)}{x^3(x^2+2x+1)}=\lim_{x\to0}\frac{x+1}{x^2(x+1)^2}$$ $$\lim_{x\to0}\frac{x^2+x}{x^5+2x^4+x^3}=\lim_{x\to0}\frac{1}{x^2(x+1)}$$ As $x\to0^-$ or $x\to0^+$, we see that $x^2(x+1)$ still approaches $0$ from the right, so $x^2(x+1)$. Therefore, function $\frac{1}{x^2(x+1)}$ will approach $\infty$. $$\lim_{x\to0}\frac{x^2+x}{x^5+2x^4+x^3}=\infty$$ b) $$\lim_{x\to-1}\frac{x^2+x}{x^5+2x^4+x^3}$$ Using the operations in a), we have: $$\lim_{x\to-1}\frac{x^2+x}{x^5+2x^4+x^3}=\lim_{x\to-1}\frac{1}{x^2(x+1)}$$ As $x\to-1^+$, we have $x^2(x+1)$ approaches $0$ from the right, so $x^2(x+1)\gt0$. Therefore, function $\frac{1}{x^2(x+1)}$ will approach $\infty$. As $x\to-1^-$, we have $x^2(x+1)$ approaches $0$ from the left, so $x^2(x+1)\lt0$. Therefore, function $\frac{1}{x^2(x+1)}$ will approach $-\infty$. Since $\frac{1}{x^2(x+1)}$ does not approach the same value as $x\to-1$, $\lim_{x\to-1}\frac{1}{x^2(x+1)}$ does not exist. Therefore, $\lim_{x\to-1}\frac{x^2+x}{x^5+2x^4+x^3}$ also does not exist.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.