Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.4 Exercises - Page 1026: 9

Answer

$\iint_R\sin(x^2+y^2)dA=\frac{\pi(\cos 1-\cos 9)}{4}$

Work Step by Step

In the first quadrant, the circles with center the origin and radii 1 and 3 have the equations $r=1$ and $r=3$ where $0\leq \theta\leq \pi/2$ Then, the region $R$ can be written $R=\{(r,\theta)|1\leq r\leq 3, 0\leq \theta\leq \pi/2\}$. Evaluate the given integral: $\iint_R \sin(x^2+y^2)dA=\int_1^3\int_0^{\pi/2}\sin (r^2)\cdot rd\theta dr$ $=\int_1^3\int_0^{\pi/2}r\sin(r^2)d\theta dr$ $=\int_1^3r\sin(r^2)\theta]_0^{\pi/2}dr$ $=\int_1^3\frac{\pi r\sin(r^2)}{2}dr$ $=-\frac{\pi\cos(r^2)}{4}]_1^3$ $=\frac{\pi(\cos 1-\cos 9)}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.