Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.4 Exercises - Page 1026: 19

Answer

The volume is $\frac{16\pi}{3}$.

Work Step by Step

In polar coordinates, the disk $x^2+y^2\leq 4$ is written as $0\leq r\leq 2$ when $0\leq \theta\leq 2\pi$. Then, the volume of the solid under the cone $z=\sqrt{x^2+y^2}$ or $z=\sqrt{r^2}$ and above the disk $x^2+y^2\leq 4$ is given by $V=\int_0^2\int_0^{2\pi}\sqrt{r^2}\cdot rd\theta dr$. Evaluate $V$: $V=\int_0^2\int_0^{2\pi}r^2d\theta dr$ $=\int_0^2[r^2\theta]_0^{2\pi}dr$ $=\int_0^22\pi r^2 dr$ $=\frac{2\pi r^3}{3}]_0^2$ $=\frac{16\pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.