Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.4 Exercises - Page 1026: 32

Answer

$\int_0^2\int_0^{\sqrt{2x-x^2}}\sqrt{x^2+y^2}dydx=\frac{16}{9}$

Work Step by Step

Notice that: $y=\sqrt{2x-x^2}$ $y^2=2x-x^2$ $x^2+y^2-2x=0$ $(x-1)^2+y^2=1$ For $0\leq x\leq 2$, it means that $y=\sqrt{2x-x^2}$ describes an upper semicircle in quadrant I center at $(1,0)$ with the radius $1$. Write this equation in polar coordinates: $x^2+y^2=2x$ $r^2=2r\cos \theta$ $r=2\cos\theta$ Then, $R=\{(x,y)|0\leq x\leq 2,0\leq y\leq \sqrt{2x-x^2}\}$ can be converted to $R=\{(r,\theta)|0\leq r\leq 2\cos\theta,0\leq\theta\leq \pi/2\}$. Convert the integral to polar coordinates and evaluate: $\int_0^2\int_0^{\sqrt{2x-x^2}}\sqrt{x^2+y^2}dydx=\int_0^{\pi/2}\int_0^{2\cos\theta}\sqrt{r^2}\cdot rdrd\theta$ $=\int_0^{\pi/2}\int_0^{2\cos\theta}r^2drd\theta$ $=\int_0^{\pi/2}\frac{r^3}{3}]_0^{2\cos\theta}d\theta$ $=\int_0^{\pi/2}\frac{8\cos^3\theta}{3}d\theta$ $=\int_0^{\pi/2}\frac{8\cos\theta}{3}-\frac{8\sin^2\theta\cos\theta}{3}d\theta$ $=\frac{8\sin\theta}{3}-\frac{8\sin^3\theta}{9}]_0^{\pi/2}$ $=\frac{8}{3}-\frac{8}{9}$ $=\frac{16}{9}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.