Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.4 Exercises - Page 1026: 14

Answer

$\iint_D xdA=\frac{8}{3}-\frac{3\pi}{16}$

Work Step by Step

$x^2+y^2=2x$ is a circle center at $(1,0)$ and radius 1 since it can be rewritten as $(x-1)^2+y^2=1$ Meanwhile, $x^2+y^2=4$ is a circle center at the origin and radius 2. It describes that the circle $x^2+y^2=4$ is outside the circle $x^2+y^2=2x$. Convert $x^2+y^2=2x$ in polar coordinates: $r^2=2r\cos \theta$ $r=\cos\theta$ Then, the region in the first quadrant that lies both circles above is written as the set of points $D=\{(r,\theta)|0\leq \theta \leq\frac{\pi}{2},\cos\theta\leq r\leq 2\}$. Evaluate the given integral over $D$: $\iint_D xdA=\int_0^{\pi/2}\int_{\cos\theta}^2r\cos \theta\cdot r dr d\theta$ $=\int_0^{\pi/2}\frac{r^3\cos\theta}{3}]_{\cos\theta}^2d\theta$ $=\int_0^{\pi/2}\frac{8\cos\theta}{3}-\frac{\cos^4\theta}{3}d\theta$ $=\frac{8\sin\theta}{3}-\frac{12\theta+8\sin(2\theta)+\sin(4\theta)}{32}]_0^{\pi/2}$ $=(\frac{8}{3}-\frac{6\pi+0+0}{32})-(0-0)$ $=\frac{8}{3}-\frac{3\pi}{16}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.