Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.4 Exercises - Page 1026: 24

Answer

The volume is $\frac{9\pi}{4}$.

Work Step by Step

Find the domain $R$ of the paraboloid $z=1+2x^2+2y^2$ under the plane $z=7$ in the first octant: $z\leq 7$ $1+2x^2+2y^2\leq 7$ $2x^2+2y^2\leq 6$ $x^2+y^2\leq 3$ The last inequality describes a region inside circle center at $(0,0)$ with radius $\sqrt{3}$. Then, $R=\{(r,\theta)|0\leq r\leq \sqrt{3},0\leq \theta\leq \pi/2$. The volume of the solid bounded the paraboloid and the plane $z=7$ in the first octant is given by $V=\int_0^\sqrt{3}\int_0^{\pi/2}(7-(1+2r^2))rd\theta dr$. Evaluate the volume: $V=\int_0^\sqrt{3}\int_0^{\pi/2}(6r-2r3)d\theta dr$ $=\int_0^\sqrt{3}(6r-2r^3)\theta]_0^{\pi/2}dr$ $=\int_0^\sqrt{3}(3r-r^3)\pi dr$ $=(\frac{3r^2}{2}-\frac{r^4}{4})\pi ]_0^{\sqrt{3}}$ $=(\frac{9}{2}-\frac{9}{4})\pi-0$ $=\frac{9\pi}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.