Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.4 Exercises - Page 1026: 7

Answer

$\iint_Dx^2ydA=\frac{1250}{3}$

Work Step by Step

Given: $D$ is the top half of the disk with center the origin and radius $5$ The region $D$ is the set of points $\{(r,\theta)|0\leq r\leq 5, 0\leq \theta\leq \pi\}$. Evaluate the integral: $\iint_Dx^2ydA=\int_0^5\int_0^\pi (r\cos\theta)^2(r\sin\theta)rd\theta dr$ $=\int_0^5\int_0^\pi r^4\sin\theta\cos^2\theta d\theta dr$ $=\int_0^5 \frac{-r^4\cos^3\theta}{3}]_0^\pi dr$ $=\int_0^5(\frac{-r^4(-1)^3}{3}-\frac{-r^4\cdot 1^3}{3})dr$ $=\int_0^5\frac{2r^4}{3}dr$ $=\frac{2r^5}{15}]_0^5$ $=\frac{2\cdot 5^5}{15}-0$ $=\frac{1250}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.