Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.4 Exercises - Page 1026: 8

Answer

$\iint_R (2x-y)dA=\frac{16-12\sqrt{2}}{3}$

Work Step by Step

In polar coordinates, the circle $x^2+y^2=4$ is given by $r=2$, the line $x=0$ is given by $\theta=\frac{\pi}{2}$, and the line $y=x$ is given by $\theta=\frac{\pi}{4}$. Then, $R=\{(r,\theta)|0\leq r\leq 2,\frac{\pi}{4}\leq \theta\leq \frac{\pi}{2}\}$ Evaluate the given integral: $\iint_R(2x-y)dA=\int_0^2\int_{\pi/4}^{\pi/2}(2r\cos\theta -r\sin\theta)rd\theta dr$ $=\int_0^2(2r\sin\theta+r\cos\theta)r]_{\pi/4}^{\pi/2} dr$ $=\int_0^2(2r\cdot 1+r\cdot 0)r-(2r\cdot \frac{\sqrt{2}}{2}+r\frac{\sqrt{2}}{2})rdr$ $=\int_0^2(\frac{4-3\sqrt{2}}{2})r^2dr$ $=\frac{4-3\sqrt{2}}{6}r^3]_0^2$ $=\frac{4-3\sqrt{2}}{6}\cdot 2^3-0$ $=\frac{16-12\sqrt{2}}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.