Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.4 Exercises - Page 1026: 23

Answer

The volume is $\frac{4\pi a^3}{3}$.

Work Step by Step

A sphere of radius $a$ is obtained by combining upper hemisphere $z_u=\sqrt{a^2-x^2-y^2}$ and lower hemisphere $z_l=-\sqrt{a^2-x^2-y^2}$. The region where these hemisphere is defined is $R=\{(x,y)|x^2+y^2\leq a^2\}$ or $R=\{(r,\theta)|0\leq r\leq a,0\leq\theta\leq 2\pi\}$. The volume of the sphere is given by $V=\iint_R z_u-z_ldA$: Find the volume: $V=\int_0^a\int_0^{2\pi}(\sqrt{a^2-r^2}-(-\sqrt{a^2-r^2}))rd\theta dr$ $=\int_0^a\int_0^{2\pi}2r\sqrt{a^2-r^2}d\theta dr$ $=\int_0^a2r\sqrt{a^2-r^2}\theta]_0^{2\pi}dr$ $=\int_0^a4\pi r\sqrt{a^2-r^2}dr$ $=-\frac{4\pi (a^2-r^2)^{3/2}}{3}]_0^a$ $=0-(-\frac{4\pi a^3}{3})$ $=\frac{4\pi a^3}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.