Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.4 Exercises - Page 1026: 12

Answer

$\iint_D\cos\sqrt{x^2+y^2}dA=(4\sin 2+2\cos 2-2)\pi$

Work Step by Step

In polar coordinates, the region $D$ is written as $\{(r,\theta)|0\leq r\leq 2,0\leq\theta\leq 2\pi\}$. Evaluate the given integral: $\iint_D\cos\sqrt{x^2+y^2}dA=\int_0^{2\pi}\int_0^2\cos(\sqrt{r^2})rdrd\theta$ $=\int_0^{2\pi}\int_0^2r\cos rdrd\theta$ $=\int_0^{2\pi}[r\sin r+\cos r]_0^2 d\theta$ $=\int_0^{2\pi}(2\sin 2+\cos 2-1)d\theta$ $=(2\pi-0)(2\sin 2+\cos 2-1)$ $=4\sin 2+2\cos 2-2)\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.