Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.4 Exercises - Page 1026: 20

Answer

$81\pi$

Work Step by Step

Find the region $R$ such that the paraboloid $z=18-2x^2-2y^2$ (in polar coordinates $z=18-2r^2$) is above the $xy-$plane: $z\geq 0$ $18-2x^2-2y^2\geq 0$ $2x^2+2y^2\leq 18$ $x^2+y^2\leq 9$ Then, $R$ is a disk center at $(0,0)$ with the radius $3$ or in polar coordinates $R=\{(r,\theta)|0\leq r\leq 3,0\leq\theta\leq 2\pi\}$. The volume of the solid below the paraboloid and above the $xy-$plane is given by $V=\int_0^3\int_0^{2\pi}(18-2r^2)\cdot rd\theta dr$ $=\int_0^3\int_0^{2\pi}(18r-2r^3)d\theta dr$ $=\int_0^3(18r-2r^3)\pi\theta]_0^{2\pi}dr$ $=\int_0^3(36r-4r^3)\pi dr$ $=(18r^2-r^4)\pi]_0^3$ $=(18\cdot 9-81)\pi-0$ $=81\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.