Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.4 Exercises - Page 1026: 30

Answer

$\int_0^a\int_{-\sqrt{a^2-y^2}}^0x^2ydxdy=0$

Work Step by Step

For any positive real number $a$, $R=\{(x,y)|0\leq y\leq a,-\sqrt{a^2-y^2}\leq x\leq 0\}$ describes a left half of circle center at $(0,0)$ with radius $a$. In polar coordinates, it can be expressed as $R=\{(r,\theta)|0\leq r\leq a,\pi/2\leq \theta\leq 3\pi/2\}$. Convert the integral in polar coordinates and evaluate: $\int_0^a\int_{-\sqrt{a^2-y^2}}^0x^2ydxdy=\int_0^a\int_{\pi/2}^{3\pi/2}(r\cos \theta)^2r\sin\theta \cdot rd\theta dr$ $=\int_0^a\int_{\pi/2}^{3\pi/2}r^4\cos^2\theta\sin\theta d\theta dr$ $=\int_0^a-\frac{r^4\cos^3\theta}{3}]_{\pi/2}^{3\pi/2}dr$ $=\int_0^a 0dr$ $=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.