Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - Review Exercises - Page 579: 44

Answer

$$\frac{3}{2}\operatorname{arcsec} \left( {3x} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{3}{{2x\sqrt {9{x^2} - 1} }}dx} \cr & {\text{Let }}u = 3x,{\text{ }}x = \frac{u}{3},{\text{ }}dx = \frac{1}{3}du \cr & {\text{Substituting}} \cr & = \int {\frac{3}{{2\left( {u/3} \right)\sqrt {9{{\left( {u/3} \right)}^2} - 1} }}\left( {\frac{1}{3}} \right)du} \cr & = \frac{3}{2}\int {\frac{1}{{u\sqrt {{u^2} - 1} }}du} \cr & {\text{Integrate by tables }}\int {\frac{{du}}{{u\sqrt {{u^2} - 1} }} = \operatorname{arcsec} \left| u \right| + C,{\text{ then}}} \cr & = \frac{3}{2}\operatorname{arcsec} \left| u \right| + C \cr & {\text{Write in terms of }}u,{\text{ let }}u = 3x \cr & = \frac{3}{2}\operatorname{arcsec} \left| {3x} \right| + C \cr & x > \frac{1}{3},{\text{ then}} \cr & = \frac{3}{2}\operatorname{arcsec} \left( {3x} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.