Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - Review Exercises - Page 579: 15

Answer

$$\frac{{{x^2}}}{2}\arcsin 2x + \frac{1}{8}x\sqrt {1 - 4{x^2}} - \frac{1}{{16}}\arcsin \left( {2x} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {x\arcsin 2x} dx \cr & {\text{Integrating by parts}} \cr & u = \arcsin 2x,{\text{ }}du = \frac{2}{{\sqrt {1 - {{\left( {2x} \right)}^2}} }}dx \cr & dv = xdx,{\text{ }}v = \frac{{{x^2}}}{2} \cr & \int {udv} = uv - \int {vdu} \cr & \int {x\arcsin 2x} dx = \frac{{{x^2}}}{2}\arcsin 2x - \int {\frac{{{x^2}}}{2}} \frac{2}{{\sqrt {1 - {{\left( {2x} \right)}^2}} }}dx \cr & = \frac{{{x^2}}}{2}\arcsin 2x - \int {\frac{{{x^2}}}{{\sqrt {1 - 4{x^2}} }}} dx \cr & = \frac{{{x^2}}}{2}\arcsin 2x - \frac{1}{8}\int {\frac{{{{\left( {2x} \right)}^2}}}{{\sqrt {1 - {{\left( {2x} \right)}^2}} }}\left( 2 \right)} dx \cr & {\text{By tables }}\int {\frac{{{u^2}}}{{\sqrt {{a^2} - {u^2}} }}du = \frac{1}{2}\left( { - u\sqrt {{a^2} - {u^2}} + {a^2}\arcsin \frac{u}{a}} \right) + C} \cr & = \frac{{{x^2}}}{2}\arcsin 2x - \frac{1}{{16}}\left( { - 2x\sqrt {1 - {{\left( {2x} \right)}^2}} + \arcsin \left( {2x} \right)} \right) + C \cr & = \frac{{{x^2}}}{2}\arcsin 2x + \frac{1}{8}x\sqrt {1 - 4{x^2}} - \frac{1}{{16}}\arcsin \left( {2x} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.