Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - Review Exercises - Page 579: 27

Answer

$$\frac{1}{3}\left( {{x^2} - 8} \right)\sqrt {{x^2} + 4} $$

Work Step by Step

$$\eqalign{ & \int {\frac{{{x^3}}}{{\sqrt {4 + {x^2}} }}} dx \cr & {\text{Let }}x = 2\tan \theta ,{\text{ }}dx = 2{\sec ^2}\theta d\theta \cr & {\text{Substitute}} \cr & \int {\frac{{{x^3}}}{{\sqrt {4 + {x^2}} }}} dx = \int {\frac{{{{\left( {2\tan \theta } \right)}^3}}}{{\sqrt {4 + {{\left( {2\tan \theta } \right)}^2}} }}\left( {2{{\sec }^2}\theta } \right)d\theta } \cr & = \int {\frac{{8{{\tan }^3}\theta }}{{\sqrt {4 + 4{{\tan }^2}\theta } }}\left( {2{{\sec }^2}\theta } \right)d\theta } \cr & = \int {\frac{{8{{\tan }^3}\theta }}{{\sqrt {4\left( {1 + {{\tan }^2}\theta } \right)} }}\left( {2{{\sec }^2}\theta } \right)d\theta } \cr & {\text{Use the pythagorean identity se}}{{\text{c}}^2}\theta = 1 + {\tan ^2}\theta \cr & = \int {\frac{{8{{\tan }^3}\theta }}{{2\sqrt {{{\sec }^2}\theta } }}\left( {2{{\sec }^2}\theta } \right)d\theta } \cr & = 8\int {{{\tan }^3}\theta \sec \theta d\theta } \cr & {\text{Recall that }}{a^{m + n}} = {a^m}{a^n} \cr & = 8\int {{{\tan }^2}\theta \sec \theta \tan \theta d\theta } \cr & = 8\int {\left( {{{\sec }^2}\theta + 1} \right)\sec \theta \tan \theta d\theta } \cr & = 8\int {{{\sec }^2}\theta \sec \theta \tan \theta d\theta } + 8\int {\sec \theta \tan \theta d\theta } \cr & {\text{Integrating}} \cr & {\text{ = }}\frac{8}{3}{\sec ^3}\theta + 8\sec \theta + C \cr & {\text{We know that }}x = 2\tan \theta ,{\text{ }}\sec \theta = \frac{{\sqrt {{x^2} + 4} }}{2} \cr & {\text{ = }}\frac{8}{3}{\left( {\frac{{\sqrt {{x^2} + 4} }}{2}} \right)^3} + 8\left( {\frac{{\sqrt {{x^2} + 4} }}{2}} \right) + C \cr & {\text{ = }}\frac{8}{3}\left( {\frac{{{{\left( {{x^2} + 4} \right)}^{3/2}}}}{8}} \right) + 4\left( {\sqrt {{x^2} + 4} } \right) + C \cr & = \frac{1}{3}{\left( {{x^2} + 4} \right)^{3/2}} + 4\sqrt {{x^2} + 4} \cr & {\text{Factoring}} \cr & {\text{ = }}\frac{1}{3}{\left( {{x^2} + 4} \right)^{1/2}}\left( {{x^2} + 4 - 12} \right) \cr & {\text{ = }}\frac{1}{3}\left( {{x^2} - 8} \right)\sqrt {{x^2} + 4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.