Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - Review Exercises - Page 579: 43

Answer

$$\frac{1}{2}\ln \left( {{x^2} + 4x + 8} \right) - {\tan ^{ - 1}}\left( {\frac{{x + 2}}{2}} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{x}{{{x^2} + 4x + 8}}dx} \cr & {\text{Completing the square}} \cr & \int {\frac{x}{{\left( {{x^2} + 4x + 4} \right) + 4}}dx} \cr & \int {\frac{x}{{{{\left( {x + 2} \right)}^2} + 4}}dx} \cr & {\text{Let }}u = x + 2,{\text{ }}x = u - 2,{\text{ }}du = dx \cr & {\text{Substituting}} \cr & \int {\frac{x}{{{{\left( {x + 2} \right)}^2} + 4}}dx} = \int {\frac{{u - 2}}{{{u^2} + 4}}du} \cr & = \int {\frac{u}{{{u^2} + 4}}du} - \int {\frac{2}{{{u^2} + 4}}du} \cr & = \frac{1}{2}\int {\frac{{2u}}{{{u^2} + 4}}du} - \int {\frac{2}{{{u^2} + 4}}du} \cr & {\text{Integrating by tables}} \cr & = \frac{1}{2}\ln \left( {{u^2} + 4} \right) - 2\left( {\frac{1}{2}{{\tan }^{ - 1}}\left( {\frac{u}{2}} \right)} \right) + C \cr & = \frac{1}{2}\ln \left( {{u^2} + 4} \right) - {\tan ^{ - 1}}\left( {\frac{u}{2}} \right) + C \cr & {\text{Write in terms of }}u,{\text{ let }}u = x + 2 \cr & = \frac{1}{2}\ln \left( {{x^2} + 4x + 8} \right) - {\tan ^{ - 1}}\left( {\frac{{x + 2}}{2}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.