Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - Review Exercises - Page 579: 36

Answer

$$\frac{4}{3}\ln \left| {x - 1} \right| - \frac{2}{{3\left( {x - 1} \right)}} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{4x - 2}}{{3{{\left( {x - 1} \right)}^2}}}} dx \cr & \frac{1}{3}\int {\frac{{4x - 2}}{{{{\left( {x - 1} \right)}^2}}}} dx \cr & {\text{Decomposing the integrand into partial fractions}} \cr & \frac{{4x - 2}}{{{{\left( {x - 1} \right)}^2}}} = \frac{A}{{x - 1}} + \frac{B}{{{{\left( {x - 1} \right)}^2}}} \cr & 4x - 2 = A\left( {x - 1} \right) + B \cr & 4x - 2 = Ax - A + B \cr & {\text{Equating coefficients}} \cr & A = 4 \cr & - A + B = - 2 \to B = 2 \cr & \cr & \frac{{4x - 2}}{{{{\left( {x - 1} \right)}^2}}} = \frac{A}{{x - 1}} + \frac{B}{{{{\left( {x - 1} \right)}^2}}} \cr & \frac{{4x - 2}}{{{{\left( {x - 1} \right)}^2}}} = \frac{4}{{x - 1}} + \frac{2}{{{{\left( {x - 1} \right)}^2}}} \cr & \frac{1}{3}\int {\frac{{4x - 2}}{{{{\left( {x - 1} \right)}^2}}}} dx = \frac{1}{3}\int {\left[ {\frac{4}{{x - 1}} + \frac{2}{{{{\left( {x - 1} \right)}^2}}}} \right]} dx \cr & = \frac{1}{3}\int {\frac{4}{{x - 1}}} dx + \frac{2}{3}\int {\frac{1}{{{{\left( {x - 1} \right)}^2}}}} dx \cr & {\text{Integrating}} \cr & = \frac{4}{3}\ln \left| {x - 1} \right| + \frac{2}{3}\left( { - \frac{1}{{x - 1}}} \right) + C \cr & = \frac{4}{3}\ln \left| {x - 1} \right| - \frac{2}{{3\left( {x - 1} \right)}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.