Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - Review Exercises - Page 579: 41

Answer

$$1 - \frac{{\sqrt 2 }}{2}$$

Work Step by Step

$$\eqalign{ & \int_0^{\sqrt \pi /2} {\frac{x}{{1 + \sin {x^2}}}} dx \cr & {\text{Let }}u = {x^2},{\text{ }}du = 2xdx,{\text{ }}dx = \frac{{du}}{{2x}} \cr & {\text{The new limits of integration are}} \cr & x = \frac{{\sqrt \pi }}{2} \to u = {\left( {\frac{{\sqrt \pi }}{2}} \right)^2} = \frac{\pi }{4} \cr & x = 0 \to u = {\left( 0 \right)^2} = 0 \cr & {\text{Substituting}} \cr & \int_0^{\sqrt \pi /2} {\frac{x}{{1 + \sin {x^2}}}} dx = \int_0^{\pi /4} {\frac{x}{{1 + \sin u}}\left( {\frac{1}{{2x}}} \right)} du \cr & = \frac{1}{2}\int_0^{\pi /4} {\frac{1}{{1 + \sin u}}} du \cr & {\text{Integrate by tables }}\int {\frac{1}{{1 + \sin u}}du = \tan u - \sec u + C,{\text{ then}}} \cr & \frac{1}{2}\int_0^{\pi /4} {\frac{1}{{1 + \sin u}}} du = \frac{1}{2}\left[ {\tan u - \sec u} \right]_0^{\pi /4} \cr & = \frac{1}{2}\left[ {\tan \left( {\frac{\pi }{4}} \right) - \sec \left( {\frac{\pi }{4}} \right)} \right] - \frac{1}{2}\left[ {\tan \left( 0 \right) - \sec \left( 0 \right)} \right] \cr & = \frac{1}{2}\left[ {1 - \sqrt 2 } \right] - \frac{1}{2}\left[ {0 - 1} \right] \cr & = \frac{1}{2} - \frac{{\sqrt 2 }}{2} + \frac{1}{2} \cr & = 1 - \frac{{\sqrt 2 }}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.