Answer
$g'(x) = \frac{1}{2x}$
Work Step by Step
$g(x) = \ln \sqrt {2x}$
$g(x) = \ln (2x)^{\frac{1}{2}}$
$g(x) = \frac{1}{2}\ln (2x)$
$g'(x) = 0\ln(2x) + (\frac{1}{2})(\frac{1}{2x})(2)$
$g'(x) = (\frac{1}{2})(\frac{1}{2x})(2)$
$g'(x) = \frac{1}{4x}(2)$
$g'(x) = \frac{2}{4x}$
$g'(x) = \frac{1}{2x}$