Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 5 - Logarithmic, Exponential, and Other Transcendental Functions - Review Exercises - Page 393: 21

Answer

$${\text{ln}}\left( {2 + \sqrt 3 } \right)$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /3} {\sec \theta } d\theta \cr & {\text{Rewrite}} \cr & \int_0^{\pi /3} {\sec \theta } d\theta = \int_0^{\pi /3} {\sec \theta \left( {\frac{{\sec \theta + \tan \theta }}{{\sec \theta + \tan \theta }}} \right)} d\theta \cr & = \int_0^{\pi /3} {\frac{{{{\sec }^2}\theta + \sec \theta \tan \theta }}{{\sec \theta + \tan \theta }}} d\theta \cr & {\text{Let }}u = \sec \theta + \tan \theta ,{\text{ }}du = \left( {\sec \theta \tan \theta + {{\sec }^2}\theta } \right)d\theta \cr & {\text{The new limits of integration are}} \cr & x = \frac{\pi }{3} \to u = \sec \left( {\frac{\pi }{3}} \right) + \tan \left( {\frac{\pi }{3}} \right) = 2 + \sqrt 3 \cr & x = 0 \to u = \sec \left( 0 \right) + \tan \left( 0 \right) = 1 \cr & {\text{Substitute and integrate}} \cr & \int_0^{\pi /3} {\frac{{{{\sec }^2}\theta + \sec \theta \tan \theta }}{{\sec \theta + \tan \theta }}} d\theta = \int_1^{2 + \sqrt 3 } {\frac{{du}}{u}} \cr & {\text{Integrating}} \cr & = \left[ {\ln \left| u \right|} \right]_1^{2 + \sqrt 3 } \cr & {\text{ = ln}}\left( {2 + \sqrt 3 } \right) - \ln \left( 1 \right) \cr & = {\text{ln}}\left( {2 + \sqrt 3 } \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.