Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.3 Exercises - Page 991: 9

Answer

$$\frac{1}{4}\pi $$

Work Step by Step

$$\eqalign{ & \int_0^\pi {\int_0^{\cos \theta } r dr} d\theta \cr & {\text{The region }}R{\text{ is:}} \cr & R = \left\{ {\left( {r,\theta } \right):0 \leqslant r \leqslant \pi ,{\text{ 0}} \leqslant \theta \leqslant \cos \theta } \right\}{\text{ }}\left( {{\text{Graph below}}} \right) \cr & \cr & \int_0^\pi {\int_0^{\cos \theta } r dr} d\theta \cr & {\text{Integrate with respect to }}r \cr & = \int_0^\pi {\left[ {\frac{{{r^2}}}{2}} \right]_0^{\cos \theta }} d\theta \cr & = \int_0^\pi {\left[ {\frac{{{{\left( {\cos \theta } \right)}^2}}}{2} - \frac{{{{\left( 0 \right)}^2}}}{2}} \right]} d\theta \cr & = \frac{1}{2}\int_0^\pi {{{\cos }^2}\theta } d\theta \cr & = \frac{1}{2}\int_0^\pi {\frac{{1 + \cos 2\theta }}{2}} d\theta \cr & {\text{Integrate with respect to }}\theta \cr & = \frac{1}{2}\left[ {\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta } \right]_0^\pi \cr & = \frac{1}{2}\left[ {\frac{1}{2}\left( \pi \right) + \frac{1}{4}\sin 2\pi } \right] - \frac{1}{2}\left[ {\frac{1}{2}\left( 0 \right) + \frac{1}{4}\sin 0} \right] \cr & = \frac{1}{2}\left[ {\frac{1}{2}\pi + 0} \right] - \frac{1}{2}\left[ 0 \right] \cr & = \frac{1}{4}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.