Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.3 Exercises - Page 991: 22

Answer

$$\frac{2}{3}\pi $$

Work Step by Step

$$\eqalign{ & \int_0^2 {\int_y^{\sqrt {8 - {y^2}} } {\sqrt {{x^2} + {y^2}} } dxdy} \cr & R{\text{ has the bounds}} \cr & y \leqslant x \leqslant \sqrt {8 - {y^2}} ,{\text{ }}0 \leqslant x \leqslant 2 \cr & {\text{The region }}R{\text{ in polar coordinates is}} \cr & R = \left\{ {\left( {x,y} \right):0 \leqslant r \leqslant 2,{\text{ }}\frac{\pi }{4} \leqslant \theta \leqslant \frac{\pi }{2}} \right\} \cr & {\text{Where: }}x = r\cos \theta ,{\text{ }}y = r\sin \theta {\text{ and }}dydx = rdrd\theta \cr & {\text{So}},{\text{ we have}} \cr & \int_0^2 {\int_y^{\sqrt {8 - {y^2}} } {\sqrt {{x^2} + {y^2}} } dxdy} = \int_{\pi /4}^{\pi /2} {\int_0^2 {\sqrt {{{\left( {r\cos \theta } \right)}^2} + {{\left( {r\sin \theta } \right)}^2}} } rdrd\theta } \cr & = \int_{\pi /4}^{\pi /2} {\int_0^2 {\sqrt {{r^2}{{\cos }^2}\theta + {r^2}{{\sin }^2}\theta } } rdrd\theta } \cr & = \int_{\pi /4}^{\pi /2} {\int_0^2 {{r^2}} drd\theta } \cr & {\text{Integrate with respect to }}r \cr & = \int_{\pi /4}^{\pi /2} {\left[ {\frac{{{r^3}}}{3}} \right]_0^2d\theta } \cr & = \int_{\pi /4}^{\pi /2} {\frac{8}{3}} d\theta \cr & {\text{Integrate }} \cr & = \frac{8}{3}\left( {\frac{\pi }{2} - \frac{\pi }{4}} \right) \cr & = \frac{2}{3}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.