Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.3 Exercises - Page 991: 26

Answer

$$\frac{{\sin 2 - 2\cos 2}}{2}\pi $$

Work Step by Step

$$\eqalign{ & \int_0^2 {\int_0^{\sqrt {4 - {x^2}} } {\sin \sqrt {{x^2} + {y^2}} } dydx} \cr & R{\text{ has the bounds}} \cr & 0 \leqslant y \leqslant \sqrt {4 - {x^2}} ,{\text{ }}0 \leqslant x \leqslant 2 \cr & {\text{Is quarter of a circle of radius 2}},{\text{ centered at the origin}} \cr & {\text{The region }}R{\text{ in polar coordinates is}} \cr & R = \left\{ {\left( {x,y} \right):0 \leqslant r \leqslant 2,{\text{ }}0 \leqslant \theta \leqslant \frac{\pi }{2}} \right\} \cr & {\text{Where: }}x = r\cos \theta ,{\text{ }}y = r\sin \theta {\text{ and }}dydx = rdrd\theta \cr & {\text{So}},{\text{ we have}} \cr & \int_0^2 {\int_0^{\sqrt {4 - {x^2}} } {\sin \sqrt {{x^2} + {y^2}} } dydx} \cr & = \int_0^{\pi /2} {\int_0^2 {\sin \sqrt {{r^2}{{\cos }^2}\theta + {r^2}{{\sin }^2}\theta } rdrd\theta } } \cr & = \int_0^{\pi /2} {\int_0^2 {\left( {\sin r} \right)rdrd\theta } } \cr & {\text{Integrating by parts with respect to }}r,{\text{ we obtain}} \cr & x\sin x \cr & = \int_0^{\pi /2} {\left[ {\sin x - x\cos x} \right]_0^2} d\theta \cr & = \int_0^{\pi /2} {\left[ {\left( {\sin 2 - 2\cos 2} \right) - \left( {\sin 0 - 0\cos 0} \right)} \right]} d\theta \cr & = \left( {\sin 2 - 2\cos 2} \right)\int_0^{\pi /2} {d\theta } \cr & = \left( {\sin 2 - 2\cos 2} \right)\left( {\frac{\pi }{2}} \right) \cr & = \frac{{\sin 2 - 2\cos 2}}{2}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.