Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.3 Exercises - Page 991: 17

Answer

$$\frac{{{a^3}}}{3}$$

Work Step by Step

$$\eqalign{ & \int_0^a {\int_0^{\sqrt {{a^2} - {y^2}} } y dx} dy \cr & R{\text{ has the bounds}} \cr & 0 \leqslant x \leqslant \sqrt {{a^2} - {y^2}} ,{\text{ }}0 \leqslant y \leqslant a \cr & {\text{The region }}R{\text{ in polar coordinates is}} \cr & R = \left\{ {\left( {x,y} \right):0 \leqslant r \leqslant a,{\text{ 0}} \leqslant \theta \leqslant \frac{\pi }{2}} \right\} \cr & {\text{Where: }}y = r\sin \theta {\text{ and }}dxdy = rdrd\theta \cr & {\text{So}},{\text{ we have}} \cr & \int_0^a {\int_0^{\sqrt {{a^2} - {y^2}} } y dx} dy = \int_0^{\pi /2} {\int_0^a {\left( {r\sin \theta } \right)} rdr} d\theta \cr & = \int_0^{\pi /2} {\int_0^a {{r^2}\sin \theta } dr} d\theta \cr & {\text{Integrate with respect to }}r \cr & = \int_0^{\pi /2} {\left[ {\frac{{{r^3}}}{3}\sin \theta } \right]_0^a} d\theta \cr & = \int_0^{\pi /2} {\frac{{{a^3}}}{3}\sin \theta } d\theta \cr & = \frac{{{a^3}}}{3}\int_0^{\pi /2} {\sin \theta } d\theta \cr & {\text{Integrate}} \cr & = \frac{{{a^3}}}{3}\left[ { - \cos \theta } \right]_0^{\pi /2} \cr & = \frac{{{a^3}}}{3}\left[ { - \cos \left( {\frac{\pi }{2}} \right) + \cos \left( 0 \right)} \right] \cr & = \frac{{{a^3}}}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.