Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.3 Exercises - Page 991: 16

Answer

$$\frac{1}{6}$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /2} {\int_0^{1 - \cos \theta } {\left( {\sin \theta } \right)rdr} } d\theta \cr & {\text{The region }}R{\text{ is:}} \cr & R = \left\{ {\left( {r,\theta } \right):0 \leqslant r \leqslant 1 - \cos \theta ,{\text{ 0}} \leqslant \theta \leqslant \frac{\pi }{2}} \right\}{\text{ }}\left( {{\text{Graph below}}} \right) \cr & \cr & \int_0^{\pi /2} {\int_0^{1 - \cos \theta } {\left( {\sin \theta } \right)rdr} } d\theta \cr & {\text{Integrate with respect to }}r \cr & = \int_0^{\pi /2} {\left[ {\frac{{{r^2}}}{2}} \right]_0^{1 - \cos \theta }} d\theta \cr & = \int_0^{\pi /2} {\left[ {\frac{{\left( {\sin \theta } \right){{\left( {1 - \cos \theta } \right)}^2}}}{2}} \right]} d\theta \cr & = \frac{1}{2}\int_0^{\pi /2} {{{\left( {1 - \cos \theta } \right)}^2}\left( {\sin \theta } \right)} d\theta \cr & {\text{Integrate with respect to }}\theta ,{\text{ use integration by parts}} \cr & = \frac{1}{2}\left[ {\frac{{{{\left( {1 - \cos \theta } \right)}^3}}}{3}} \right]_0^{\pi /2} \cr & {\text{Evaluating the limits}} \cr & = \frac{1}{2}\left[ {\frac{{{{\left( {1 - \cos \left( {\pi /2} \right)} \right)}^3}}}{3} - \frac{{{{\left( {1 - \cos \left( 0 \right)} \right)}^3}}}{3}} \right] \cr & = \frac{1}{6} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.