Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.3 Exercises - Page 991: 11

Answer

$$0$$

Work Step by Step

$$\eqalign{ & \int_0^{2\pi } {\int_0^6 {3{r^2}} \sin \theta dr} d\theta \cr & {\text{The region }}R{\text{ is:}} \cr & R = \left\{ {\left( {r,\theta } \right):0 \leqslant r \leqslant 6,{\text{ 0}} \leqslant \theta \leqslant 2\pi } \right\}{\text{ }}\left( {{\text{Graph below}}} \right) \cr & \cr & \int_0^{2\pi } {\int_0^6 {3{r^2}} \sin \theta dr} d\theta \cr & {\text{Integrate with respect to }}r \cr & = \int_0^{2\pi } {\left[ {{r^3}\sin \theta } \right]_0^6} d\theta \cr & = \int_0^{2\pi } {\left[ {{{\left( 6 \right)}^3}\sin \theta - {{\left( 0 \right)}^3}\sin \theta } \right]} d\theta \cr & = \int_0^{2\pi } {216\sin \theta } d\theta \cr & {\text{Integrate with respect to }}\theta \cr & = - 216\left[ {\cos \theta } \right]_0^{2\pi } \cr & = - 216\left( {\cos 2\pi - \cos 0} \right) \cr & = - 216\left( {1 - 1} \right) \cr & = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.