Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.3 Exercises - Page 991: 25

Answer

$$\frac{{\sin \left( 1 \right)}}{2}\pi $$

Work Step by Step

$$\eqalign{ & \int_{ - 1}^1 {\int_0^{\sqrt {1 - {x^2}} } {\cos \left( {{x^2} + {y^2}} \right)} dydx} \cr & R{\text{ has the bounds}} \cr & 0 \leqslant y \leqslant \sqrt {1 - {x^2}} ,{\text{ }} - {\text{1}} \leqslant x \leqslant 1 \cr & {\text{Is a semicircle of radius }}1,{\text{ centered at the origin}} \cr & {\text{The region }}R{\text{ in polar coordinates is}} \cr & R = \left\{ {\left( {x,y} \right):0 \leqslant r \leqslant 1,{\text{ }}0 \leqslant \theta \leqslant \pi } \right\} \cr & {\text{Where: }}x = r\cos \theta ,{\text{ }}y = r\sin \theta {\text{ and }}dydx = rdrd\theta \cr & {\text{So}},{\text{ we have}} \cr & = \int_0^\pi {\int_0^1 {\cos \left( {{r^2}{{\cos }^2}\theta + {r^2}{{\sin }^2}\theta } \right)rdrd\theta } } \cr & = \int_0^\pi {\int_0^1 {\cos \left( {{r^2}} \right)rdrd\theta } } \cr & {\text{Integrate with respect to }}r \cr & = \frac{1}{2}\int_0^\pi {\left[ {\sin {r^2}} \right]_0^1} d\theta \cr & = \frac{1}{2}\int_0^\pi {\left[ {\sin \left( 1 \right) - \sin \left( 0 \right)} \right]} d\theta \cr & = \frac{{\sin \left( 1 \right)}}{2}\int_0^\pi {d\theta } \cr & = \frac{{\sin \left( 1 \right)}}{2}\left[ \theta \right]_0^\pi \cr & = \frac{{\sin \left( 1 \right)}}{2}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.