Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.3 Exercises - Page 991: 6

Answer

$$R = \left\{ {\left( {r,\theta } \right):0 \leqslant r \leqslant 2\sin \theta ,{\text{ 0}} \leqslant \theta \leqslant \pi } \right\}$$

Work Step by Step

$$\eqalign{ & {\text{The represented region }}R{\text{ is a circle of radius 2 centered at}} \cr & \left( {0,2} \right){\text{. }} \cr & {x^2} + {y^2} = {\left( 2 \right)^2} \cr & {x^2} + {\left( {y - 2} \right)^2} = 4 \cr & {x^2} + {y^2} - 2y + 4 = 4 \cr & {x^2} + {y^2} - 2y = 0 \cr & x = r\cos \theta ,{\text{ }}y = r\sin \theta \cr & {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta - 2r\sin \theta = 0 \cr & {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) = 2r\sin \theta \cr & r = 2\sin \theta \cr & {\text{It can be described in polar coordinates as:}} \cr & R = \left\{ {\left( {r,\theta } \right):0 \leqslant r \leqslant 2\sin \theta ,{\text{ 0}} \leqslant \theta \leqslant \pi } \right\} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.