Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.3 Exercises - Page 991: 10

Answer

$$\frac{4}{9}$$

Work Step by Step

$$\eqalign{ & \int_0^\pi {\int_0^{\sin \theta } {{r^2}} dr} d\theta \cr & {\text{The region }}R{\text{ is:}} \cr & R = \left\{ {\left( {r,\theta } \right):0 \leqslant r \leqslant \pi ,{\text{ 0}} \leqslant \theta \leqslant \sin \theta } \right\}{\text{ }}\left( {{\text{Graph below}}} \right) \cr & \cr & \int_0^\pi {\int_0^{\sin \theta } {{r^2}} dr} d\theta \cr & {\text{Integrate with respect to }}r \cr & = \int_0^\pi {\left[ {\frac{{{r^3}}}{3}} \right]_0^{\sin \theta }} d\theta \cr & = \int_0^\pi {\left[ {\frac{{{{\left( {\sin \theta } \right)}^2}}}{3} - \frac{{{{\left( 0 \right)}^2}}}{2}} \right]} d\theta \cr & = \frac{1}{3}\int_0^\pi {{{\sin }^3}\theta } d\theta \cr & = \frac{1}{3}\int_0^\pi {{{\sin }^2}\theta \sin \theta } d\theta \cr & = \frac{1}{3}\int_0^\pi {\left( {1 - {{\cos }^2}\theta } \right)\sin \theta } d\theta \cr & {\text{Integrate with respect to }}\theta \cr & = \frac{1}{3}\left[ { - \cos \theta + \frac{1}{3}{{\cos }^3}\theta } \right]_0^\pi \cr & = \frac{1}{3}\left[ { - \cos \pi + \frac{1}{3}{{\cos }^3}\pi } \right] - \frac{1}{3}\left[ { - \cos 0 + \frac{1}{3}{{\cos }^3}0} \right] \cr & = \frac{1}{3}\left( {1 - \frac{1}{3}} \right) - \frac{1}{3}\left( { - 1 + \frac{1}{3}} \right) \cr & = \frac{2}{9} + \frac{2}{9} \cr & = \frac{4}{9} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.