Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.3 Exercises - Page 991: 24

Answer

$$2\pi $$

Work Step by Step

$$\eqalign{ & \int_0^4 {\int_0^{\sqrt {4y - {y^2}} } {{x^2}} dxdy} \cr & R{\text{ has the bounds}} \cr & 0 \leqslant x \leqslant \sqrt {4y - {y^2}} ,{\text{ }}0 \leqslant y \leqslant 4 \cr & x = \sqrt {4y - {y^2}} \cr & {x^2} = 4y - {y^2} \cr & {x^2} + {y^2} = 4y \cr & {r^2}\cos \theta + {r^2}\sin \theta = 4\sin \theta \cr & {r^2} = 4r\sin \theta \cr & r = 4\sin \theta \cr & {\text{The region }}R{\text{ in polar coordinates is}} \cr & R = \left\{ {\left( {x,y} \right):0 \leqslant r \leqslant 4\sin \theta ,{\text{ }}0 \leqslant \theta \leqslant \frac{\pi }{2}} \right\} \cr & {\text{Where: }}x = r\cos \theta ,{\text{ }}y = r\sin \theta {\text{ and }}dydx = rdrd\theta \cr & {\text{So}},{\text{ we have}} \cr & \int_0^4 {\int_0^{\sqrt {4y - {y^2}} } {{x^2}} dxdy} = \int_0^{\pi /2} {\int_0^{4\sin \theta } {{{\left( {r\cos \theta } \right)}^2}rdrd\theta } } \cr & = \int_0^{\pi /2} {\int_0^{4\sin \theta } {{r^2}{{\cos }^2}\theta rdrd\theta } } \cr & = \int_0^{\pi /2} {\int_0^{4\sin \theta } {{r^3}{{\cos }^2}\theta drd\theta } } \cr & {\text{Integrate with respect to }}r \cr & = \int_0^{\pi /2} {\left[ {\frac{{{r^4}}}{4}{{\cos }^2}\theta } \right]_0^{4\sin \theta }d\theta } \cr & = \int_0^{\pi /2} {\left[ {\frac{{{{\left( {4\sin \theta } \right)}^4}}}{4}{{\cos }^2}\theta - \frac{{{{\left( 0 \right)}^4}}}{4}{{\cos }^2}\theta } \right]d\theta } \cr & = \int_0^{\pi /2} {64{{\sin }^4}\theta {{\cos }^2}\theta d\theta } \cr & {\text{Integrate by a graphing calculator}} \cr & = 2\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.