Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 14 - Multiple Integration - 14.3 Exercises - Page 991: 12

Answer

$$\frac{{16}}{3}$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /4} {\int_0^4 {{r^2}\sin \theta } \cos \theta dr} d\theta \cr & {\text{The region }}R{\text{ is:}} \cr & R = \left\{ {\left( {r,\theta } \right):0 \leqslant r \leqslant 4,{\text{ 0}} \leqslant \theta \leqslant \frac{\pi }{4}} \right\}{\text{ }}\left( {{\text{Graph below}}} \right) \cr & \cr & \int_0^{\pi /4} {\int_0^4 {{r^2}\sin \theta } \cos \theta dr} d\theta \cr & {\text{Integrate with respect to }}r \cr & = \int_0^{\pi /4} {\left[ {\frac{{{r^3}}}{3}\sin \theta \cos \theta } \right]_0^4} d\theta \cr & = \frac{1}{3}\int_0^{\pi /4} {\left[ {{r^3}\sin \theta \cos \theta } \right]_0^4} d\theta \cr & = \frac{1}{3}\int_0^{\pi /4} {\left[ {{{\left( 4 \right)}^3}\sin \theta \cos \theta - {{\left( 0 \right)}^3}\sin \theta \cos \theta } \right]} d\theta \cr & = \frac{{64}}{3}\int_0^{\pi /4} {\sin \theta \cos \theta } d\theta \cr & {\text{Integrate with respect to }}\theta \cr & = \frac{{64}}{3}\left[ {\frac{{{{\sin }^2}\theta }}{2}} \right]_0^{\pi /4} \cr & = \frac{{64}}{3}\left[ {\frac{{{{\sin }^2}\left( {\pi /4} \right)}}{2} - \frac{{{{\sin }^2}\left( 0 \right)}}{2}} \right] \cr & = \frac{{64}}{3}\left[ {\frac{1}{4}} \right] \cr & = \frac{{16}}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.