Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - Review Exercises - Page 960: 32

Answer

$$dz = \frac{3}{{y + 3z}}dx + \frac{{12z - 3x}}{{{{\left( {y + 3z} \right)}^2}}}dy - \frac{{9x + 12y}}{{{{\left( {y + 3z} \right)}^2}}}dz$$

Work Step by Step

$$\eqalign{ & w = \frac{{3x + 4y}}{{y + 3z}} \cr & {\text{The total differential of the dependent variable }}w{\text{ is}} \cr & dw = \frac{{\partial w}}{{\partial x}}dx + \frac{{\partial w}}{{\partial y}}dy + \frac{{\partial w}}{{\partial z}}dz \cr & {\text{Calculating }}\frac{{\partial w}}{{\partial x}}{\text{, }}\frac{{\partial w}}{{\partial y}}{\text{ and }}\frac{{\partial w}}{{\partial z}} \cr & \frac{{\partial w}}{{\partial x}} = \frac{\partial }{{\partial x}}\left[ {\frac{{3x + 4y}}{{y + 3z}}} \right] \cr & \frac{{\partial w}}{{\partial x}} = \frac{\partial }{{\partial x}}\left[ {\frac{{3x}}{{y + 3z}} + \frac{{4y}}{{y + 3z}}} \right] \cr & \frac{{\partial w}}{{\partial x}} = \frac{3}{{y + 3z}} + 0 \cr & \frac{{\partial w}}{{\partial x}} = \frac{3}{{y + 3z}} \cr & \cr & \frac{{\partial w}}{{\partial y}} = \frac{\partial }{{\partial y}}\left[ {\frac{{3x + 4y}}{{y + 3z}}} \right] \cr & {\text{By quotient rule}} \cr & \frac{{\partial w}}{{\partial y}} = \frac{{\left( {y + 3z} \right)\left( 4 \right) - \left( {3x + 4y} \right)\left( 1 \right)}}{{{{\left( {y + 3z} \right)}^2}}} \cr & \frac{{\partial w}}{{\partial y}} = \frac{{4y + 12z - 3x - 4y}}{{{{\left( {y + 3z} \right)}^2}}} \cr & \frac{{\partial w}}{{\partial y}} = \frac{{12z - 3x}}{{{{\left( {y + 3z} \right)}^2}}} \cr & \cr & and \cr & \cr & \frac{{\partial w}}{{\partial z}} = \frac{\partial }{{\partial z}}\left[ {\frac{{3x + 4y}}{{y + 3z}}} \right] \cr & \frac{{\partial w}}{{\partial z}} = - \frac{{\left( {3x + 4y} \right)\left( 3 \right)}}{{{{\left( {y + 3z} \right)}^2}}} \cr & \frac{{\partial w}}{{\partial z}} = - \frac{{9x + 12y}}{{{{\left( {y + 3z} \right)}^2}}} \cr & \cr & {\text{Therefore,}} \cr & dw = \frac{{\partial w}}{{\partial x}}dx + \frac{{\partial w}}{{\partial y}}dy + \frac{{\partial w}}{{\partial z}}dz \cr & dz = \frac{3}{{y + 3z}}dx + \frac{{12z - 3x}}{{{{\left( {y + 3z} \right)}^2}}}dy - \frac{{9x + 12y}}{{{{\left( {y + 3z} \right)}^2}}}dz \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.