Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - Review Exercises - Page 960: 14

Answer

$${\text{The limit does not exist}}{\text{}}$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {0,0} \right)} \frac{{{x^2}y}}{{{x^4} + {y^2}}} \cr & {\text{Evaluate and substitute 0 for }}x{\text{ and }}0{\text{ for }}y \cr & = \frac{{{{\left( 0 \right)}^2}\left( 0 \right)}}{{{{\left( 0 \right)}^4} + {{\left( 0 \right)}^2}}} \cr & = \frac{0}{0} \cr & {\text{First}},{\text{ we consider the limit along the path }}y = 0.{\text{ We have}} \cr & \mathop {\lim }\limits_{\left( {x,0} \right) \to \left( {x,0} \right)} \frac{{{x^2}y}}{{{x^4} + {y^2}}} = \frac{{{x^2}\left( 0 \right)}}{{{x^4} + {{\left( 0 \right)}^2}}} = 0 \cr & {\text{Similarly}},{\text{ for the path }}x = 0,{\text{ we have}} \cr & \mathop {\lim }\limits_{\left( {0,y} \right) \to \left( {0,y} \right)} \frac{{{x^2}y}}{{{x^4} + {y^2}}} = \frac{{{{\left( 0 \right)}^2}y}}{{{{\left( 0 \right)}^4} + {{\left( y \right)}^2}}} = 0 \cr & {\text{Just because the limits along the first two paths you try are }} \cr & {\text{the same does not mean that the limit exists}} \cr & {\text{We may simply need to look at more paths}}. \cr & {\text{for the path }}y = x,{\text{ we have}} \cr & \mathop {\lim }\limits_{\left( {x,x} \right) \to \left( {0,0} \right)} \frac{{{x^2}\left( x \right)}}{{{x^4} + {{\left( x \right)}^2}}} = \mathop {\lim }\limits_{\left( {x,x} \right) \to \left( {0,0} \right)} \frac{{{x^2}}}{{{x^2} + 1}} \cr & \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{{x^2} + 1}} = 0 \cr & {\text{for the path }}y = {x^2},{\text{ we have}} \cr & \mathop {\lim }\limits_{\left( {x,{x^2}} \right) \to \left( {0,0} \right)} \frac{{{x^2}\left( {{x^2}} \right)}}{{{x^4} + {{\left( {{x^2}} \right)}^2}}} = \mathop {\lim }\limits_{\left( {x,x} \right) \to \left( {0,0} \right)} \frac{{{x^4}}}{{2{x^4}}} = \frac{1}{2} \cr & {\text{Since the limit along this path doesn}}{\text{'t match the}} \cr & {\text{limit along the first paths, the limit does not exist}}{\text{.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.