Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - Review Exercises - Page 960: 19

Answer

$$\eqalign{ & {f_x}\left( {x,y} \right) = 4{y^3}{e^{4x}} \cr & {f_y}\left( {x,y} \right) = 3{y^2}{e^{4x}} \cr} $$

Work Step by Step

$$\eqalign{ & f\left( {x,y} \right) = {y^3}{e^{4x}} \cr & {\text{Calculate }}{f_x}\left( {x,y} \right){\text{ treating }}y{\text{ as a constant}} \cr & {f_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {{y^3}{e^{4x}}} \right] \cr & {f_x}\left( {x,y} \right) = {y^3}\frac{\partial }{{\partial x}}\left[ {{e^{4x}}} \right] \cr & {f_x}\left( {x,y} \right) = {y^3}\left( {4{e^{4x}}} \right) \cr & {f_x}\left( {x,y} \right) = 4{y^3}{e^{4x}} \cr & {\text{Calculate }}{f_y}\left( {x,y} \right){\text{ treating }}x{\text{ as a constant}} \cr & {f_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {{y^3}{e^{4x}}} \right] \cr & {f_y}\left( {x,y} \right) = {e^{4x}}\frac{\partial }{{\partial y}}\left[ {{y^3}} \right] \cr & {f_y}\left( {x,y} \right) = {e^{4x}}\left( {3{y^2}} \right) \cr & {f_y}\left( {x,y} \right) = 3{y^2}{e^{4x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.