Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - Review Exercises - Page 960: 26

Answer

$$\eqalign{ & {g_{xy}}\left( {x,y} \right) = 2\cos \left( {x - 2y} \right) \cr & {g_{yx}}\left( {x,y} \right) = 2\cos \left( {x - 2y} \right) \cr} $$

Work Step by Step

$$\eqalign{ & g\left( {x,y} \right) = \cos \left( {x - 2y} \right) \cr & {\text{Calculate }}{g_x}\left( {x,y} \right){\text{ treating }}y{\text{ as a constant}} \cr & {g_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {\cos \left( {x - 2y} \right)} \right] \cr & {g_x}\left( {x,y} \right) = - \sin \left( {x - 2y} \right)\frac{\partial }{{\partial x}}\left[ {x - 2y} \right] \cr & {g_x}\left( {x,y} \right) = - \sin \left( {x - 2y} \right) \cr & {\text{Calculate }}{g_{xy}}\left( {x,y} \right){\text{ differentiating }}{g_x}\left( {x,y} \right){\text{ with respect to }}y \cr & {\text{and treating }}y{\text{ as a constant}}{\text{.}} \cr & {g_{xy}}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ { - \sin \left( {x - 2y} \right)} \right] \cr & {g_{xy}}\left( {x,y} \right) = - \cos \left( {x - 2y} \right)\left( { - 2} \right) \cr & {g_{xy}}\left( {x,y} \right) = 2\cos \left( {x - 2y} \right) \cr & \cr & {\text{Calculate }}{g_y}\left( {x,y} \right){\text{ treating }}x{\text{ as a constant}} \cr & {g_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {\cos \left( {x - 2y} \right)} \right] \cr & {g_y}\left( {x,y} \right) = - \sin \left( {x - 2y} \right)\left( { - 2} \right) \cr & {g_y}\left( {x,y} \right) = 2\sin \left( {x - 2y} \right) \cr & {\text{Calculate }}{g_{yx}}\left( {x,y} \right){\text{ differentiating }}{g_y}\left( {x,y} \right){\text{ with respect to }}x \cr & {\text{and treating }}y{\text{ as a constant}}{\text{.}} \cr & {g_{yx}}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {2\sin \left( {x - 2y} \right)} \right] \cr & {g_{yx}}\left( {x,y} \right) = 2\cos \left( {x - 2y} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.