Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - Review Exercises - Page 960: 23

Answer

$$\eqalign{ & {f_{xy}}\left( {x,y} \right) = - 1 \cr & {f_{yx}}\left( {x,y} \right) = - 1 \cr} $$

Work Step by Step

$$\eqalign{ & f\left( {x,y} \right) = 3{x^2} - xy + 2{y^3} \cr & {\text{Calculate }}{f_x}\left( {x,y} \right){\text{ treating }}y{\text{ as a constant}} \cr & {f_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {3{x^2} - xy + 2{y^3}} \right] \cr & {f_x}\left( {x,y} \right) = 6x - y\left( 1 \right) + 0 \cr & {f_x}\left( {x,y} \right) = 6x - y \cr & {\text{Calculate }}{f_{xy}}\left( {x,y} \right){\text{ differentiating }}{f_x}\left( {x,y} \right){\text{ with respect to }}y \cr & {\text{treating }}y{\text{ as a constant}}{\text{.}} \cr & {f_{xy}}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {6x - y} \right] \cr & {f_{xy}}\left( {x,y} \right) = - 1 \cr & \cr & {\text{Calculate }}{f_y}\left( {x,y} \right){\text{ treating }}x{\text{ as a constant}} \cr & {f_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {3{x^2} - xy + 2{y^3}} \right] \cr & {f_y}\left( {x,y} \right) = - x + 6{y^2} \cr & {\text{Calculate }}{f_{yx}}\left( {x,y} \right){\text{ differentiating }}{f_y}\left( {x,y} \right){\text{ with respect to }}x \cr & {\text{and treating }}y{\text{ as a constant}}{\text{.}} \cr & {f_{yx}}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ { - x + 6{y^2}} \right] \cr & {f_{yx}}\left( {x,y} \right) = - 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.