Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - Review Exercises - Page 960: 17

Answer

$$\eqalign{ & {f_x}\left( {x,y} \right) = {e^x}\cos y \cr & {f_y}\left( {x,y} \right) = - {e^x}\sin y \cr} $$

Work Step by Step

$$\eqalign{ & f\left( {x,y} \right) = {e^x}\cos y \cr & {\text{Calculate }}{f_x}\left( {x,y} \right){\text{ treating }}y{\text{ as a constant}} \cr & {f_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {{e^x}\cos y} \right] \cr & {f_x}\left( {x,y} \right) = \cos y\frac{\partial }{{\partial x}}\left[ {{e^x}} \right] \cr & {f_x}\left( {x,y} \right) = {e^x}\cos y \cr & {\text{Calculate }}{f_y}\left( {x,y} \right){\text{ treating }}x{\text{ as a constant}} \cr & {f_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {{e^x}\cos y} \right] \cr & {f_y}\left( {x,y} \right) = {e^x}\frac{\partial }{{\partial y}}\left[ {\cos y} \right] \cr & {f_y}\left( {x,y} \right) = {e^x}\left( { - \sin y} \right) \cr & {f_y}\left( {x,y} \right) = - {e^x}\sin y \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.