Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - Review Exercises - Page 960: 18

Answer

$$\eqalign{ & {f_x}\left( {x,y} \right) = \frac{{{y^2}}}{{{{\left( {x + y} \right)}^2}}} \cr & {f_y}\left( {x,y} \right) = \frac{{{x^2}}}{{{{\left( {x + y} \right)}^2}}} \cr} $$

Work Step by Step

$$\eqalign{ & f\left( {x,y} \right) = \frac{{xy}}{{x + y}} \cr & {\text{Calculate }}{f_x}\left( {x,y} \right){\text{ treating }}y{\text{ as a constant}} \cr & {f_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {\frac{{xy}}{{x + y}}} \right] \cr & {\text{By the quotient rule}} \cr & {f_x}\left( {x,y} \right) = \frac{{\left( {x + y} \right)\left( y \right) - xy\left( 1 \right)}}{{{{\left( {x + y} \right)}^2}}} \cr & {f_x}\left( {x,y} \right) = \frac{{xy + {y^2} - xy}}{{{{\left( {x + y} \right)}^2}}} \cr & {f_x}\left( {x,y} \right) = \frac{{{y^2}}}{{{{\left( {x + y} \right)}^2}}} \cr & \cr & {\text{Calculate }}{f_y}\left( {x,y} \right){\text{ treating }}y{\text{ as a constant}} \cr & {f_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {\frac{{xy}}{{x + y}}} \right] \cr & {\text{By the quotient rule}} \cr & {f_y}\left( {x,y} \right) = \frac{{\left( {x + y} \right)\left( x \right) - xy\left( 1 \right)}}{{{{\left( {x + y} \right)}^2}}} \cr & {f_y}\left( {x,y} \right) = \frac{{{x^2} + xy - xy}}{{{{\left( {x + y} \right)}^2}}} \cr & {f_y}\left( {x,y} \right) = \frac{{{x^2}}}{{{{\left( {x + y} \right)}^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.