Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - Review Exercises - Page 960: 22

Answer

$$\eqalign{ & {w_x} = \frac{x}{{\sqrt {{x^2} - {y^2} - {z^2}} }} \cr & {w_y} = - \frac{y}{{\sqrt {{x^2} - {y^2} - {z^2}} }} \cr & {w_z} = - \frac{z}{{\sqrt {{x^2} - {y^2} - {z^2}} }} \cr} $$

Work Step by Step

$$\eqalign{ & w = \sqrt {{x^2} - {y^2} - {z^2}} \cr & {\text{Calculate }}{w_x}{\text{ treating }}y{\text{ and }}z{\text{ as constants}} \cr & {w_x} = \frac{\partial }{{\partial x}}\left[ {\sqrt {{x^2} - {y^2} - {z^2}} } \right] \cr & {w_x} = \frac{{\frac{\partial }{{\partial x}}\left[ {{x^2} - {y^2} - {z^2}} \right]}}{{2\sqrt {{x^2} - {y^2} - {z^2}} }} \cr & {w_x} = \frac{{2x}}{{2\sqrt {{x^2} - {y^2} - {z^2}} }} \cr & {w_x} = \frac{x}{{\sqrt {{x^2} - {y^2} - {z^2}} }} \cr & {\text{Calculate }}{w_y}{\text{ treating }}x{\text{ and }}z{\text{ as constants}} \cr & {w_y} = \frac{\partial }{{\partial y}}\left[ {\sqrt {{x^2} - {y^2} - {z^2}} } \right] \cr & {w_y} = \frac{{\frac{\partial }{{\partial y}}\left[ {{x^2} - {y^2} - {z^2}} \right]}}{{2\sqrt {{x^2} - {y^2} - {z^2}} }} \cr & {w_y} = \frac{{ - 2y}}{{2\sqrt {{x^2} - {y^2} - {z^2}} }} \cr & {w_y} = - \frac{y}{{\sqrt {{x^2} - {y^2} - {z^2}} }} \cr & {\text{Calculate }}{w_z}{\text{ treating }}x{\text{ and }}y{\text{ as constants}} \cr & {w_z} = \frac{\partial }{{\partial z}}\left[ {\sqrt {{x^2} - {y^2} - {z^2}} } \right] \cr & {w_z} = \frac{{\frac{\partial }{{\partial y}}\left[ {{x^2} - {y^2} - {z^2}} \right]}}{{2\sqrt {{x^2} - {y^2} - {z^2}} }} \cr & {w_z} = \frac{{ - 2z}}{{2\sqrt {{x^2} - {y^2} - {z^2}} }} \cr & {w_z} = - \frac{z}{{\sqrt {{x^2} - {y^2} - {z^2}} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.