Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - Review Exercises - Page 960: 20

Answer

$${z_x} = \frac{{2x}}{{{x^2} + {y^2} + 1}}{\text{ and }}{z_y} = \frac{{2y}}{{{x^2} + {y^2} + 1}}$$

Work Step by Step

$$\eqalign{ & z = \ln \left( {{x^2} + {y^2} + 1} \right) \cr & {\text{Calculate }}{z_x}{\text{ treating }}y{\text{ as a constant}} \cr & {z_x} = \frac{\partial }{{\partial x}}\left[ {\ln \left( {{x^2} + {y^2} + 1} \right)} \right] \cr & {z_x} = \frac{{\frac{\partial }{{\partial x}}\left[ {{x^2} + {y^2} + 1} \right]}}{{{x^2} + {y^2} + 1}} \cr & {z_x} = \frac{{2x}}{{{x^2} + {y^2} + 1}} \cr & {\text{Calculate }}{z_y}{\text{ treating }}x{\text{ as a constant}} \cr & {z_y} = \frac{\partial }{{\partial y}}\left[ {\ln \left( {{x^2} + {y^2} + 1} \right)} \right] \cr & {z_y} = \frac{{\frac{\partial }{{\partial y}}\left[ {{x^2} + {y^2} + 1} \right]}}{{{x^2} + {y^2} + 1}} \cr & {z_y} = \frac{{2y}}{{{x^2} + {y^2} + 1}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.