Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 13 - Functions of Several Variables - Review Exercises - Page 960: 25

Answer

$$\eqalign{ & {h_{xy}}\left( {x,y} \right) = \cos y - \sin x \cr & {h_{yx}}\left( {x,y} \right) = \cos y - \sin x \cr} $$

Work Step by Step

$$\eqalign{ & h\left( {x,y} \right) = x\sin y + y\cos x \cr & {\text{Calculate }}{h_x}\left( {x,y} \right){\text{ treating }}y{\text{ as a constant}} \cr & {h_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {x\sin y + y\cos x} \right] \cr & {h_x}\left( {x,y} \right) = \sin y - y\sin x \cr & {\text{Calculate }}{h_{xy}}\left( {x,y} \right){\text{ differentiating }}{h_x}\left( {x,y} \right){\text{ with respect to }}y \cr & {\text{and treating }}y{\text{ as a constant}}{\text{.}} \cr & {h_{xy}}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {\sin y - y\sin x} \right] \cr & {h_{xy}}\left( {x,y} \right) = \cos y - \sin x \cr & \cr & {\text{Calculate }}{h_y}\left( {x,y} \right){\text{ treating }}x{\text{ as a constant}} \cr & {h_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {x\sin y + y\cos x} \right] \cr & {h_y}\left( {x,y} \right) = x\cos y + \cos x \cr & {\text{Calculate }}{h_{yx}}\left( {x,y} \right){\text{ differentiating }}{h_y}\left( {x,y} \right){\text{ with respect to }}x \cr & {\text{and treating }}y{\text{ as a constant}}{\text{.}} \cr & {h_{yx}}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {x\cos y + \cos x} \right] \cr & {h_{yx}}\left( {x,y} \right) = \cos y - \sin x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.